

Inter-sentence Relation Extraction for Associating Biological Context with Events in Biomedical Texts

Motivation

"Context such as cell type is the big thing missing in reading."

– Mike Bolt, Chicago biologist CURE, March 21

Background: biological relations

Biological context examples

- Species: Human, yeast, mouse
- Organ: Liver, lung
- Tissue Type: lymphoid, embryo
- Cell type: t-cell, endothelial
- Cell line: human artery
- Sub-cellular: endosome, nucleus

Biological event examples

- Release of RAC1
- Rac1 activation
- translocation of Rac1/RhoGDI

Background: visualizing the problem

- Multiple context can hold over a particular section of text
- Events commonly occur in sentences that do not include the correct context mention

Background: linguistic features

TABLE I CLASSIFICATION FEATURES

Name	Details		
General features			
Sentence distance	No. of sentences separating the event and context mentions		
Dependency distance	No. of edges separating the mentions within dependency graph		
Context type frequency	No. of context mentions of the same type		
Is context closest	Indicates whether the context mention is the <i>closest</i> one to the event		
Φ features			
Is sentence first person			
Is sentence past tense	An instance for each: event and context mentions		
Is sentence present tense			
Syntactic features			
Event spanning dependency bigrams	Sequence of dependency bigrams spanning from event mention		
Negated event mention	Indicates whether a <i>neg</i> dependency is within 2 degrees in dep. graph		
Context spanning dependency bigrams	Sequence of dependency bigrams spanning from context mention		
Negated context mention	Indicates whether a neg dependency is within 2 degrees in dep. graph		

Experimental design: measurements

Experimental design: data formatting

- Events are key
- Class discrepancy between positive and negative labels
- Correcting for annotation style

Experimental design: CV procedure

Classification: our baseline classifier

Algorithm 1 Deterministic context baseline

function IsCONTEXT(evt, ctx, k) evtSen = getSentenceIx(evt) ctxSen = getSentenceIx(ctx) interval = [evtSen - k, evtSen + k]if $ctxSen \in interval$ then return Trueelse return Falseend if end function

- Logistic Regression with ℓ^2 regularization penalty
- Support Vector Machines with the following kernels:
 - Linear
 - Polynomial
 - Gaussian
- Random Forest
- Feed-Forward Neural Network

Classification: Advanced classifier comparison

Images and data taken from Scikit-learn

Results: classifier scores

TABLE III Best Scores per Classifying Algorithm

Algorithm	Precision	Recall	F1
Baseline	0.399	0.816	0.536
Logistic Reg.	0.543	0.743	0.628
SVM - Poly	0.660	0.605	0.631
SVM - Linear	0.568	0.763	0.651
SVM - Gaussian	0.595	0.742	0.660
Random Forest	0.637	0.686	0.661
Feed Fwd. NN	0.633	0.761	0.691

Results: optimal feature sets

 TABLE II

 Optimal feature subset per algorithm

Algorithm	Feature Subset
SVM - Poly	Is ctx. closest, Is ctx. closest, Dependency dist., Ctx. sent. past tense, Context freq., Sentence dist., Evt. sent. present tense,
	Ctx. sent. present tense, Negated evt. mention, Ctx. spanning dep. bigrams
SVM - Gaussian	Evt. sent. present tense, Context freq., Ctx. sent. present tense, Sentence dist., Ctx. sent. present tense, Is ctx. closest, Dependency
	dist., Evt. sent. present tense, Is ctx. closest, Ctx. spanning dep. bigrams
SVM - Linear	Ctx. sent. present tense, Sentence dist., Negated evt. mention, Evt. sent. present tense, Context freq., Ctx. sent. present tense,
	Ctx. sent. past tense, Is ctx. closest, Evt. sent. past tense, Is ctx. closestDependency dist., Ctx. spanning dep. bigrams
Logistic Reg.	Ctx. sent. present tense, Evt. sent. present tense, Context freq., Ctx. sent. present tense, Ctx. sent. past tense, Is ctx. closest,
	Evt. sent. past tense, Is ctx. closestDependency dist., Evt. sent. present tense, Ctx. spanning dep. bigrams
Random Forest	Ctx. sent. present tense, Negated ctx. mention, Sentence dist., Negated evt. mention, Evt. sent. present tense, Context freq.,
	Ctx. sent. present tense, Ctx. sent. past tense, Is ctx. closest, Is ctx. closestDependency dist., Ctx. spanning dep. bigrams
Feed Fwd. NN	Ctx. sent. present tense, Negated evt. mention, Evt. sent. present tense, Context freq., Ctx. sent. present tense, Ctx. sent. past
	tense, Is ctx. closest, Evt. sent. past tense, Is ctx. closestDependency dist., Ctx. spanning dep. bigrams

Results: per-paper analysis

Future work

- Neural model creation to boost F1 score
- Statistical significance testing of comparative results between classifiers
- Polarity mismatch testing