Support vector machines (SVM)

- A generic, simple, standard way to build a classifier is with a SVM
- The basic "plug-in classifier" (black box)
- Very convenient software is available to do this.
- We will cover the approach briefly

Support vector machines (SVM)

2

Support vector machines

- Linearly separable data means that we can chose

$$
y_{i}\left(\boldsymbol{w} \cdot \boldsymbol{x}_{i}+b\right) \geq 1
$$

- Consider the best pair of parallel planes that push against points on the two groups.

Support vector machines

5

Support vector machines

- Solved by

$$
\begin{aligned}
\operatorname{minimize} & (1 / 2) \boldsymbol{w} \cdot \boldsymbol{w} \\
\text { subject to } & y_{i}\left(\boldsymbol{w} \cdot \boldsymbol{x}_{i}+b\right) \geq 1
\end{aligned}
$$

- What if the data is not linearly separable
- Find "best" plane (need to balance cost of misclassification)
- The boundary is determined by a few points (the support vectors)

Support vector machines

- Consider the best pair of parallel planes that push against points on the two groups.
- The sum of the minimum distances from each group to the other plane can be shown to be:

$$
\frac{2}{|\mathbf{w}|}
$$

6

Support vector machines

Non-separable case
Cost, C, specifies the relative
desire to push the planes apart, verses the number of mistakes.

Support vector machines

- We have found the "best" plane from labeled training data
- How do we classify a new "test" point that has no label
- Easy---the simple formula tells us which side of the plane we are on!
- Pseudo probabilities can be created from the distance to the plane
- This describes a binary classifier. For more than one class, there are a number of approaches
- Multiple one against all
- All against all, and a consensus measure
- Train a multi-class classifier (Crammer JMLR 2001)

Support vector machines (kernel tricks)

The SVM is completely a function of dot products between the vectors (this would be clear if we did it in more detail)

This means that we can get a non-linear SVM by using a different form of the dot product, $\mathrm{K}(\mathbf{x}, \mathbf{y})$.

This is equivalent to a linear classification in a much higher dimensional space.

Support vector machines (kernel tricks)

10

Support vector machines (kernel tricks)

For example, we can produce a higher dimensional space using polynomials $=$ of the original points, e.g.,

$$
(x, y) \rightarrow\left(x^{2}, x y, y^{2}, x, y\right)=\left(u_{0}, u_{1}, u_{2}, u_{3}, u_{4}\right)
$$

Support vector machines (kernel tricks)

Artificial Neural Networks (ANN)

- Significant attention in the 80 's
- Most researchers moved on to other things
- Other, often simpler, methods became popular
- Late 90 's SVM became an easy way to get ANN performance
- Now, complex ("deep") neural networks usually outperform SVM, provided sufficient data and modern training ideas

Many slides adapted from Clay Morrison's machine learning class

A similar example (originally from Schölkopf and A. J. Smola)

$$
\begin{aligned}
\Phi: R^{2} & \rightarrow R^{3} \\
\left(x_{1}, x_{2}\right) \mapsto\left(z_{1}, z_{2}, z_{3}\right) & :=\left(x_{1}^{2}, \sqrt{(2)} x_{1} x_{2}, x_{2}^{2}\right)
\end{aligned}
$$

14

Multi-level networks

- A single artificial neuron has limited computing power
- Interesting networks have at least three* layers

- We will restrict our attention to feed-forward networks (no arrows from later stages going back to earlier ones)
*Some (e.g., Bishop) count the number of arrow blocks, so this would be a two layer network.

Layering and composition

- Our three layer network can be expressed as the composition $\quad \mathbf{y}=f(\mathbf{x})=f_{2}\left(f_{1}(\mathbf{x})\right)$
- Similarly "deep" networks are bigger compositions
- Note that we like the functions to be differentiable, and the chain rule is going to be useful.

Neural network as function approximators

- Our three layer network is a function from input to output
- ANNs can approximate any "reasonable" function
- This requires a nonlinear shaping function, $f()$.
- Function approximators have been studied in the context of "no free lunch" theorems
- (Worth reading about, not part of this course)

18

Notation

- Keeping track of everything (book keeping) is much of the heavy lifting in ANNs.
- Notation differs
- Sometimes we have explicit "bias" sometimes we assume bias nodes frozen at " 1 ", which means we can treat bias as a weights
- We will sometimes treat bias as weights for simplicity
- More advance use might require different regularizations for weights and bias terms, and then you want them separate
- Bishop (PRML) reverses x and a from these slides. Also his $h()$ is our $f($).

Notation*

- We will use super-scripts for network level. The level, l, for weights is between layer l and layer $l+l$.
- Layer one is the input, and the first sets of weights are also indexed by one.
- We will also use super-scripts to index data points
- We use i, j for the weight between nodes j (current level) and i in the next layer.
- The first index is where the information is going to.
- The activations, a are fed into the next layer inside linear function in which case they are sometimes called x.
*The notation (and images) in what follows is modified from http://ufldl.stanford.edu/wiki/index.php/Neural_Networks

- This shows one output; often there are many
- The bottom nodes are locked in at +1 . This represents the bias (offset).
- The following formulas use separate for biases (b 's) and weights (w 's)

22

$$
\begin{aligned}
& \mathbf{z}^{(l+1)}=W^{(l)} \mathbf{a}^{(l)}+\mathbf{b}^{(l)} \\
& \mathbf{a}^{(l+1)}=f\left(\mathbf{z}^{(l+1)}\right)
\end{aligned}
$$

(Matrix-vector form,
$\mathrm{f}(\bullet)$ is applied element-wise)

Training

- Tweak the weights so that for each training instance, the output (e.g., label) for each input vector (e.g., image) is close to correct

Training

- Tweak the weights so that for each training instance, the output (e.g., label) for each input vector (e.g., image) is close to correct
- Gradient descent
- Look at the effect of changing the weights on the error
- Take a step in the reverse direction (to reduce it)
- Stochastic version perturbs the step to mitigate going to the nearest local minimum
- Conceptually, we estimate the gradient using each data point, and then take a small step based on each one
- In what follows we switch notation: $E(\mathbf{w}) \equiv J(W, b)$

26

Training

Training

- We consider computing the gradient, and what we do with it as separate tasks
- We generally compute the gradient in training
- We might compute it due to a specific data point (on-line) or for all points considered together
- Once we estimate the gradient we then might
- Follow it (e.g., conjugate gradient descent)
- Follow it stochastically
- Pass it to some other fancy optimizer

