
Support vector machines (SVM)

• A generic, simple, standard way to build a classifier is with a SVM

• The basic “plug-in classifier” (black box)

• Very convenient software is available to do this.

• We will cover the approach briefly
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Support vector machines (SVM)

The SVM finds a 
plane that best 
separates the data. 
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Support vector machines

• If we have a separating hyperplane, then if you are on one 
side

• If you are on the other side

• Let yi be +1 for one class, -1 for the other.� 

w • xi + b ≥ +1

� 

w • xi + b ≤ −1
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Support vector machines

• Linearly separable data means that we can chose 

• Consider the best pair of parallel planes that push against 
points on the two groups.

4



Support vector machines
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Support vector machines

• Consider the best pair of parallel planes that push against 
points on the two groups.

• The sum of the minimum distances from each group to the 
other plane can be shown to be:

� 

2
w
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Support vector machines

• Solved by 

• What if the data is not linearly separable
– Find “best” plane (need to balance cost of misclassification)
– The boundary is determined by a few points (the support vectors)
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Support vector machines

Non-separable case
Cost, C, specifies the relative 
desire to push the planes apart, 
verses the number of mistakes.
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Support vector machines

• We have found the “best” plane from labeled training data

• How do we classify a new “test” point that has no label
– Easy---the simple formula tells us which side of the plane we are on!

• Pseudo probabilities can be created from the distance to the plane

• This describes a binary classifier. For more than one class, there 
are a number of approaches

– Multiple one against all
– All against all, and a consensus measure
– Train a multi-class classifier (Crammer JMLR 2001)
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Support vector machines (kernel tricks)

What about this case?
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Support vector machines (kernel tricks)

The SVM is completely a function of dot products 
between the vectors (this would be clear if we did it in 
more detail)

This means that we can get a non-linear SVM by using a 
different form of the dot product, K(x,y).

This is equivalent to a linear classification in a much 
higher dimensional space. 

11

Support vector machines (kernel tricks)

� 

x, y( )→ x2 , xy,y2, x, y( ) = u0 ,u1,u2 ,u3 ,u4( )

For example, we can produce a higher dimensional 
space using polynomials = of the original points, e.g., 

12



Support vector machines (kernel tricks)

Can you imagine a 3D 
space in which the 
obvious decision 
boundary is linear?
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A similar example (Originally from Schölkopf and A. J. Smola)
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Artificial Neural Networks (ANN)

• Significant attention in the 80’s 
• Most researchers moved on to other things
• Other, often simpler, methods became popular
• Late 90’s SVM became an easy way to get ANN performance
• Now, complex (“deep”) neural networks usually outperform SVM, 

provided sufficient data and modern training ideas

Many slides adapted from Clay Morrison’s machine learning class
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http://cs231n.github.io/neural-networks-1/
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Multi-level networks

• A single artificial neuron has limited computing power
– Interesting networks have at least three* layers

– We will restrict our attention to feed-forward networks (no arrows 
from later stages going back to earlier ones)

*Some (e.g., Bishop) count the number of arrow blocks, so this would be a two layer network.
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Neural network as function approximators

• Our three layer network is a function from input to output

• ANNs can approximate any “reasonable” function
– This requires a nonlinear shaping function, f(). 

• Function approximators have been studied in the context of 
“no free lunch” theorems
– (Worth reading about, not part of this course)
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Layering and composition

• Our three layer network can be expressed as the 
composition

• Similarly “deep” networks are bigger compositions

• Note that we like the functions to be differentiable, and the 
chain rule is going to be useful.

y = f x( ) = f2 f1 x( )( )
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Notation

• Keeping track of everything (book keeping) is much of the 
heavy lifting in ANNs.

• Notation differs
– Sometimes we have explicit “bias” sometimes we assume bias 

nodes frozen at “1”, which means we can treat bias as a weights
• We will sometimes treat bias as weights for simplicity
• More advance use might require different regularizations for 

weights and bias terms, and then you want them separate 
– Bishop (PRML) reverses x and a from these slides. Also his h() is 

our f(). 
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• We will use super-scripts for network level. The level, l, 
for weights is between layer l and layer l+1.
– Layer one is the input, and the first sets of weights are 

also indexed by one.

• We will also use super-scripts to index data points
• We use i,j for the weight between nodes j (current level) 

and i in the next layer.
– The first index is where the information is going to. 

• The activations, a are fed into the next layer inside linear 
function in which case they are sometimes called x.

Notation*

*The notation (and images) in what follows is modified from  
http://ufldl.stanford.edu/wiki/index.php/Neural_Networks
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• This shows one output; often there are many
• The bottom nodes are locked in at +1. This represents the bias (offset).
• The following formulas use separate for biases (b’s) and weights (w’s). 
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(for example)

ai
(1) = xi  

(input layer) For l ≥1 
zi

(l+1) = Wij
(l )

j=1

N ( l )

∑ ai
(l ) +bi

(l )

followed by    ai
(l+1) = f zi

(l+1)( )  

⎧

⎨
⎪⎪

⎩
⎪
⎪

  

f z( ) = 1
1+ exp −z( )
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(Matrix-vector form,  
f(•) is applied element-wise)

z(l+1) =W (l )a(l ) +b(l )

a(l+1) = f z(l+1)( )
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Training

• Tweak the weights so that for each training instance, the 
output (e.g., label) for each input vector (e.g., image) is 
close to correct
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Training

• Tweak the weights so that for each training instance, the 
output (e.g., label) for each input vector (e.g., image) is 
close to correct

• Optimize the objective function: 

Neural	networks	are	prone	to	
overfitting,	so	regularize.	This	
regularization	term	is	just	one	
example—there	are	many	others.

Training	error,	
superscripts	are	
training	points	
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Training

• Tweak the weights so that for each training instance, the 
output (e.g., label) for each input vector (e.g., image) is 
close to correct

• Gradient descent 
– Look at the effect of changing the weights on the error
– Take a step in the reverse direction (to reduce it)
– Stochastic version perturbs the step to mitigate going to the nearest 

local minimum
– Conceptually, we estimate the gradient using each data point, and 

then take a small step based on each one

• In what follows we switch notation:  E w( ) ≡ J W ,b( )
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Training

w1

w2

E(w)

wA wB wC

rE
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Training

• We consider computing the gradient, and what we do with it as 
separate tasks

• We generally compute the gradient in training 

• We might compute it due to a specific data point (on-line) or for 
all points considered together

• Once we estimate the gradient we then might
• Follow it (e.g., conjugate gradient descent)
• Follow it stochastically
• Pass it to some other fancy optimizer
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