Support vector machines (SVM) Support vector machines (SVM)

* A generic, simple, standard way to build a classifier is with a SVM

The SVM finds a
plane that best
separates the data.

* The basic “plug-in classifier” (black box) A

* Very convenient software is available to do this.

We will cover the approach briefly
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* Linearly separable data means that we can chose

* If we have a separating hyperplane, then if you are on one ) o
side W’Xi+b2+1 1 (\'u} o [}) > 1

e If you are on the other side W ® X, +b<-1 ) ) '
* Consider the best pair of parallel planes that push against

points on the two groups.
o Lety, be +1 for one class, -1 for the other.




Support vector machines Support vector machines

* Consider the best pair of parallel planes that push against
points on the two groups.

* The sum of the minimum distances from each group to the
other plane can be shown to be:
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* Solved by

minimize (1/2)w - w

subject to  y; (w-x; +b) > 1

e What if the data is not linearly separable
— Find “best” plane (need to balance cost of misclassification)

— The boundary is determined by a few points (the support vectors) Non-separable case

Cost, C, specifies the relative
desire to push the planes apart,
verses the number of mistakes.




Support vector machines

e We have found the “best” plane from labeled training data

* How do we classify a new “test” point that has no label

— Easy---the simple formula tells us which side of the plane we are on!
* Pseudo probabilities can be created from the distance to the plane

* This describes a binary classifier. For more than one class, there
are a number of approaches

— Multiple one against all
— All against all, and a consensus measure

— Train a multi-class classifier (Crammer JMLR 2001)

Support vector machines (kernel tricks)
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Support vector machines (kernel tricks)

The SVM is completely a function of dot products
between the vectors (this would be clear if we did it in
more detail)

This means that we can get a non-linear SVM by using a
different form of the dot product, K(x,y).

This is equivalent to a linear classification in a much
higher dimensional space.

Support vector machines (kernel tricks)

For example, we can produce a higher dimensional
space using polynomials = of the original points, e.g.,

(X,y) - (-xz’xy’yz’x’y) = (MO sU Uy U ,Lt4)
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Support vector machines (kernel tricks)

A Similar example (Originally from Scholkopf and A. J. Smola)
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impulses carried
3 3 toward cell bod
Artificial Neural Networks (ANN) " branches
dendrites of axon
” axon
nucleus >terminals

* Significant attention in the 80’s

* Most researchers moved on to other things

* Other, often simpler, methods became popular

e Late 90’s SVM became an easy way to get ANN performance

* Now, complex (“deep”) neural networks usually outperform SVM,
provided sufficient data and modern training ideas

Many slides adapted from Clay Morrison’s machine learning class
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http://cs231n.github.io/neural-networks-1/
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Multi-level networks

* Assingle artificial neuron has limited computing power

— Interesting networks have at least three* layers

output layer
input layer
hidden layer

— We will restrict our attention to feed-forward networks (no arrows
from later stages going back to earlier ones)

*Some (e.g., Bishop) count the number of arrow blocks, so this would be a two layer network.

Neural network as function approximators

* Our three layer network is a function from input to output

* ANNSs can approximate any “reasonable” function

— This requires a nonlinear shaping function, f().

* Function approximators have been studied in the context of
“no free lunch” theorems

— (Worth reading about, not part of this course)
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Layering and composition
* Our three layer network can be expressed as the
composition y = f(X) =f (f1 (X))
* Similarly “deep” networks are bigger compositions

¢ Note that we like the functions to be differentiable, and the
chain rule is going to be useful.

Notation

* Keeping track of everything (book keeping) is much of the
heavy lifting in ANNs.

* Notation differs
— Sometimes we have explicit “bias” sometimes we assume bias
nodes frozen at “1”, which means we can treat bias as a weights
* We will sometimes treat bias as weights for simplicity
* More advance use might require different regularizations for
weights and bias terms, and then you want them separate
— Bishop (PRML) reverses x and a from these slides. Also his A() is
our f{).
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Notation*

We will use super-scripts for network level. The level, [,
for weights is between layer / and layer [+1.

— Layer one is the input, and the first sets of weights are
also indexed by one.
We will also use super-scripts to index data points
We use i,j for the weight between nodes j (current level)
and i in the next layer.
— The first index is where the information is going to.

The activations, a are fed into the next layer inside linear
function in which case they are sometimes called x.

*The notation (and images) in what follows is modified from
http://ufldl.stanford .edu/wiki/index.php/Neural_Networks

hw,h(x)

Layer L,

+1

Layer L, Layer L,

 This shows one output; often there are many
» The bottom nodes are locked in at +1. This represents the bias (offset).

* The following formulas use separate for biases (b’s) and weights (w’s).
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hW,b(x)
Layer L
+1
Layer L, Layer L,
NO
I n !
a" =x, z’f D =EVVU( )al.()+b,.()
. Forl/=1 =1
(input layer)

followed by a"" = f (zf’”) )

1
1+ exp(-z)
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(for example)

hw,n(x)

Layer L,

+1

Layer L, Layer L,

Z(l+1) — W(l)a(l) +b(l)

™D _ f(z(1+1))

(Matrix-vector form,
f(*) is applied element-wise)
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Training

Tweak the weights so that for each training instance, the
output (e.g., label) for each input vector (e.g., image) is
close to correct

Training

* Tweak the weights so that for each training instance, the
output (e.g., label) for each input vector (e.g., image) is

close to correct
* Optimize the objective function:

J(W,b)=_ _Hh @)=y +g“

m*

Training error,
superscripts are
training points

N

I+

()

i
I=1 =1 j=1

Neural networks are prone to
overfitting, so regularize. This
regularization term is just one
example—there are many others.
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Training

Tweak the weights so that for each training instance, the
output (e.g., label) for each input vector (e.g., image) is
close to correct
Gradient descent

— Look at the effect of changing the weights on the error

— Take a step in the reverse direction (to reduce it)

— Stochastic version perturbs the step to mitigate going to the nearest
local minimum

— Conceptually, we estimate the gradient using each data point, and
then take a small step based on each one

In what follows we switch notation: E (w) =J (W,b)

Training

AT
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Training

We consider computing the gradient, and what we do with it as
separate tasks

We generally compute the gradient in training

We might compute it due to a specific data point (on-line) or for
all points considered together

Once we estimate the gradient we then might
* Follow it (e.g., conjugate gradient descent)
* Follow it stochastically
* Pass it to some other fancy optimizer
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