Support vector machines (SVM) Support vector machines (SVM)

* A generic, simple, standard way to build a classifier is with a SVM

The SVM finds a
plane that best
separates the data.

* The basic “plug-in classifier” (black box) A

* Very convenient software is available to do this.

We will cover the approach briefly

A

Support vector machines Support vector machines

* Linearly separable data means that we can chose

* If we have a separating hyperplane, then if you are on one) o
side W’Xi+b2+1 1 (\'u} o [}) > 1

e If you are on the other side W ® X, +b<-1)) '
* Consider the best pair of parallel planes that push against

points on the two groups.
o Lety, be +1 for one class, -1 for the other.

Support vector machines Support vector machines

* Consider the best pair of parallel planes that push against
points on the two groups.

* The sum of the minimum distances from each group to the
other plane can be shown to be:

2z
v
5 6
Support vector machines Support vector machines

* Solved by

minimize (1/2)w - w

subject to y; (w-x; +b) > 1

e What if the data is not linearly separable
— Find “best” plane (need to balance cost of misclassification)

— The boundary is determined by a few points (the support vectors) Non-separable case

Cost, C, specifies the relative
desire to push the planes apart,
verses the number of mistakes.

Support vector machines

e We have found the “best” plane from labeled training data

* How do we classify a new “test” point that has no label

— Easy---the simple formula tells us which side of the plane we are on!
* Pseudo probabilities can be created from the distance to the plane

* This describes a binary classifier. For more than one class, there
are a number of approaches

— Multiple one against all
— All against all, and a consensus measure

— Train a multi-class classifier (Crammer JMLR 2001)

Support vector machines (kernel tricks)

A o o
What about this case?
] o o
]

o o o

o o o
(o]

o] Q

10

Support vector machines (kernel tricks)

The SVM is completely a function of dot products
between the vectors (this would be clear if we did it in
more detail)

This means that we can get a non-linear SVM by using a
different form of the dot product, K(x,y).

This is equivalent to a linear classification in a much
higher dimensional space.

Support vector machines (kernel tricks)

For example, we can produce a higher dimensional
space using polynomials = of the original points, e.g.,

(X,y) - (-xz’xy’yz’x’y) = (MO sU Uy U ,Lt4)

11

12

Support vector machines (kernel tricks)

A Similar example (Originally from Scholkopf and A. J. Smola)

d:R? — R
P o a2 e m2
(.I 1, .1,2) — (41 , 29, ,»;3) = (.1,1. \/ZQ),I,LI 2, .1,2)
’ ° TR
Can you imagine a 3D x A% "
o o o . . X X X X
o space in which the § « x
. .. X X
° c0 / obvious decision X \ x x
o . . S]) X
© boundary is linear? % o * X, SN
o] o) 0 2 - SR X
g o) . X
o a x > o v Q0N % Z,;
X 2 - X 0 0
- X X :
ld X
X x X X
, 2
13 14
impulses carried
3 3 toward cell bod
Artificial Neural Networks (ANN) " branches
dendrites of axon
” axon
nucleus >terminals

* Significant attention in the 80’s

* Most researchers moved on to other things

* Other, often simpler, methods became popular

e Late 90’s SVM became an easy way to get ANN performance

* Now, complex (“deep”) neural networks usually outperform SVM,
provided sufficient data and modern training ideas

Many slides adapted from Clay Morrison’s machine learning class

impulses carried
away from cell body

cell body
Lo wo
— o
axon from a neuron i
WoTo

cell body

Zwizi +b

output axon

activation
function

http://cs231n.github.io/neural-networks-1/

15

16

Multi-level networks

* Assingle artificial neuron has limited computing power

— Interesting networks have at least three* layers

output layer
input layer
hidden layer

— We will restrict our attention to feed-forward networks (no arrows
from later stages going back to earlier ones)

*Some (e.g., Bishop) count the number of arrow blocks, so this would be a two layer network.

Neural network as function approximators

* Our three layer network is a function from input to output

* ANNSs can approximate any “reasonable” function

— This requires a nonlinear shaping function, f().

* Function approximators have been studied in the context of
“no free lunch” theorems

— (Worth reading about, not part of this course)

17

18

Layering and composition
* Our three layer network can be expressed as the
composition y = f(X) =f (f1 (X))
* Similarly “deep” networks are bigger compositions

¢ Note that we like the functions to be differentiable, and the
chain rule is going to be useful.

Notation

* Keeping track of everything (book keeping) is much of the
heavy lifting in ANNs.

* Notation differs
— Sometimes we have explicit “bias” sometimes we assume bias
nodes frozen at “1”, which means we can treat bias as a weights
* We will sometimes treat bias as weights for simplicity
* More advance use might require different regularizations for
weights and bias terms, and then you want them separate
— Bishop (PRML) reverses x and a from these slides. Also his A() is
our f{).

19

20

Notation*

We will use super-scripts for network level. The level, [,
for weights is between layer / and layer [+1.

— Layer one is the input, and the first sets of weights are
also indexed by one.
We will also use super-scripts to index data points
We use i,j for the weight between nodes j (current level)
and i in the next layer.
— The first index is where the information is going to.

The activations, a are fed into the next layer inside linear
function in which case they are sometimes called x.

*The notation (and images) in what follows is modified from
http://ufldl.stanford .edu/wiki/index.php/Neural_Networks

hw,h(x)

Layer L,

+1

Layer L, Layer L,

 This shows one output; often there are many
» The bottom nodes are locked in at +1. This represents the bias (offset).

* The following formulas use separate for biases (b’s) and weights (w’s).

21

22

—_—
hW,b(x)
Layer L
+1
Layer L, Layer L,
NO
I n !
a" =x, z’f D =EVVU()al.()+b,.()
. Forl/=1 =1
(input layer)

followed by a"" = f (zf’”))

1
1+ exp(-z)

12

(for example)

hw,n(x)

Layer L,

+1

Layer L, Layer L,

Z(l+1) — W(l)a(l) +b(l)

™D _ f(z(1+1))

(Matrix-vector form,
f(*) is applied element-wise)

23

24

Training

Tweak the weights so that for each training instance, the
output (e.g., label) for each input vector (e.g., image) is
close to correct

Training

* Tweak the weights so that for each training instance, the
output (e.g., label) for each input vector (e.g., image) is

close to correct
* Optimize the objective function:

J(W,b)=_ _Hh @)=y +g“

m*

Training error,
superscripts are
training points

N

I+

()

i
I=1 =1 j=1

Neural networks are prone to
overfitting, so regularize. This
regularization term is just one
example—there are many others.

25

26

Training

Tweak the weights so that for each training instance, the
output (e.g., label) for each input vector (e.g., image) is
close to correct
Gradient descent

— Look at the effect of changing the weights on the error

— Take a step in the reverse direction (to reduce it)

— Stochastic version perturbs the step to mitigate going to the nearest
local minimum

— Conceptually, we estimate the gradient using each data point, and
then take a small step based on each one

In what follows we switch notation: E (w) =J (W,b)

Training

AT

27

28

Training

We consider computing the gradient, and what we do with it as
separate tasks

We generally compute the gradient in training

We might compute it due to a specific data point (on-line) or for
all points considered together

Once we estimate the gradient we then might
* Follow it (e.g., conjugate gradient descent)
* Follow it stochastically
* Pass it to some other fancy optimizer

29

