Mini Lecture on

Image Reproduction

Images everywhere

- Interesting properties of the information age
 - Images are everywhere. Color works. It is all inexpensive.
 - Conversion and extension of image creation and manipulation of images.
 - It is all digital
 - Physical capture --> digital representation --> display
 - Intangible replaces the tangible

A model for light around us

- The light around us is a mixture of **photons** of different **wavelengths**
- Key points of the model for our discussion
 - The signal is made of discrete bits (like rain drops)
 - You can imagine counting them
 - The bits have a characteristic number (wavelength)
 - This distinguishes light from the colors in a rainbow

(from WikiPedia commons)

Colors we can see

- The rainbow is missing white, pink, purple, ...
- There is more to color than what is in a rainbow!

A representation of the colors we see at a given brightness.

Light from two different surfaces

Color Vision Basics

Approximate spectra sensitivity for the three cone types

Sensor/light interaction example

sensor

Multiply lined up pairs of numbers and then sum up

photon distribution

Sensor/light interaction example

Multiply lined up pairs of numbers and then sum up

Sensor/light interaction example

This suggests that sensor/ light interaction is linear

Review of the main points so far

- **Physics**. The light signal is a distribution of photons of different wavelengths
- **Human vision**. There are three cones, each which make a different weighted sum of the input

• Next top --- how to recreate the experience?

How to recreate the experience?

- **Plan A**. Simply duplicate the light signal present when the image was taken
 - This works, but it is **impractical**

How to recreate the experience?

- **Plan A**. Simply duplicate the light signal present when the image was taken
 - This works, but it is **impractical**
- Plan B. Duplicate the sensor responses

Do you need the same light to get 42?

There are many possible ways to get 42!

Main point

- To recreate the cone responses, stimulate each one **independently**.
- Suppose that our cone sensors were like these simplified ones. Can this work?

Main point

Recreating the sensor responses

- Note that the photon distribution to recreate the sensor response can look completely different from the original!
- We need to compute the amount of each primary needed for each color to display
 - This can be achieved by matrix-vector multiplication
 - (Details beyond the scope of this lecture)

What about actual human sensors?

Second Main Point

- With three numbers, you **cannot** recreate all colors you can see.
- This is not a question of poor engineering. It is a consequence of the significant cone sensor **overlap**.

Available from efg2.com

Downstream from the cones

- Color reproduction based on three numbers works relatively well anyway, partly because our brain is so adept at reconstructing a world based on relative **properties**.
- If you (approximately) reproduce the cone responses, you will reproduce the effect.
- But what you actually see is complex!

The shades of gray for the squares under A and B are the same!

Trichromacy

Experimental fact about people (with "normal" colour vision)

We don't want to do a matching experiment every time we want to use a new color!

Grassman's Contribution

Colour matching is linear

Matching is Linear (Part 1)

C1 is matched with (X1,Y1,Z1)

C = a*C1

C is matched with a * (X1, Y1, Z1)

Matching is Linear (formal)

C = a*C1 + b*C2

C1 is matched with (X1,Y1,Z1) C2 is matched with (X2,Y2,Z2)

C is matched by $a^{*}(X1,Y1,Z1) + b^{*}(X2,Y2,Z2)$

On my monitor it's (R,G,B) = (75,150,100)

But what is (R,G,B)?

R matches (X_r, Y_r, Z_r) G matches (X_g, Y_g, Z_g) B matches (X_b, Y_b, Z_b)

Then by (R,G,B)=(75,150,100) you mean (X,Y,Z), where

$$X = 75* X_{r} + 150* X_{g} + 100* X_{b}$$
$$Y = 75* Y_{r} + 150* Y_{g} + 100* Y_{b}$$
$$Z = 75* Z_{r} + 150* Z_{g} + 100* Z_{b}$$

(No need to match--just compute!)

..., now that we have specified the colour, I can print it!

$\begin{vmatrix} X \\ Y \\ Z \end{vmatrix} = \begin{vmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{vmatrix} = \begin{vmatrix} 75 \\ 100 \\ 150 \end{vmatrix}$

$\begin{vmatrix} X \\ Y \\ Z \end{vmatrix} = \begin{vmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{vmatrix} = \begin{vmatrix} R \\ G \\ B \end{vmatrix}$

$\begin{vmatrix} X \\ Y \\ Z \end{vmatrix} = M \begin{vmatrix} R \\ G \\ B \end{vmatrix}$

Colour Reproduction (Monitors & Projectors)

Possible problems?

Avalable from efg2.com

Avalable from efg2.com

Avalable from efg2.com

Luminosity is not linear

Luminosity is not linear

- There is a huge dynamic range of brightness in the world we need to navigate
- Your response to brightness is controlled by various factors such as aperture size
- If one had to put a mathematical function on brightness, log() might be a good choice.

Image encoding is not linear either

Deviations from our nice model

- Camera "black"
- Gamma

Camera Black

- Sensors always produce electrons, even if there is no light
- The effect increases as the temperature increases
- We can improve the model by adding a fixed offset
 - Specifically, the R,G, and B recorded with the lens cap on
- The resulting model is not a linear transformation

- Technically, it is "affine"

Gamma correction

- For complicated reasons, the final output of a camera is often a non-linear transformation of the RGB described so far.
- Usually the same transformation is used for R, G, and B
- A typical "gamma correction" transformation is approximately

$$F(x) = 255 * \left(\frac{x}{255}\right)^{\frac{1}{2.2}}$$

(roughly square root)

Image Formation (non-linear transform)

Why are images typically encoded in this way?

Historically, images have been gamma corrected on the assumption that their values drive a CRT (cathode ray tube) monitor which are non-linear devices.

Gamma encoding

• In the CRT, for a given input voltage, V, electrons hit the phosphors with energy E

$$E \propto V^{\gamma}$$
, where γ is $\frac{5}{2}$ (i.e., 2.5)

• So, to drive the CRT so that the output energy is linear (recreating its capture) you send it a voltage $V \propto E^{\frac{1}{\gamma}}$

Image Formation (non-linear transform)

Coincidentally, this typically gamma correction is a sensible way to encode image data into a limited number of values (e.g. 256) due to the noise sensitivity of the human vision system.

Hence, while CRT displays are now obsolete, images are still typically non-linear, and the signal to modern displays (which are linear) are typically adjusted assuming typical incoming non-linear in images.

Equally spaced just noticeable differences

Gamma encoding

- The non-linear encoding means that linear displays (now common) need to implement the mapping from gamma encoded to linear
 - One way to think about it is that they have to emulate CRT monitor
 - Gamma is also becoming an image tone correction "knob" that either fixes an incorrect value, or simply makes some images look better.

Gamma calibration

- How can your mac robustly emulate a gamma of 2.2 for your monitor?
 - The OS has no idea what you have hooked up to it!
 - But it can make you turn knobs to make an image that should be linear to be linear
 - System Preferences --> Displays --> Color --> Calibrate
 - Select "expert mode"

Gamma calibration

If you have access to a Mac, then you can play with this under System Preferences --> Displays --> Color --> Calibrate (may need to select "expert")

You should be able to explain why matching the brightness of the middle gray object compared to the black and white stripes seen from a distance can help adjust a monitor so its output is linear.

Image Formation (deluxe version)

The response of an image capture system to a light signal $L(\lambda)$ associated with a given pixels is modeled by

$$G^{(k)} = F^{(k)}(C^{(k)}) = F^{(k)}\left(b^{(k)} + \int L(\lambda) S^{(k)}(\lambda) d\lambda\right)$$

from before

where $S^{(k)}(\lambda)$ is the sensor response function for the k^{th} channel and $b^{(k)}$ is the k^{th} channel response to black.

 $S^{(k)}(\lambda)$ includes the contributions due to the aperture, focal length, sensor position in the focal plane.

F^(k) accounts for typical non-linearities such as gamma.