Mini Lecture on

Image Reproduction

Images everywhere

- Interesting properties of the information age
- Images are everywhere. Color works. It is all inexpensive.
- Conversion and extension of image creation and manipulation of images.
- It is all digital
- Physical capture --> digital representation --> display
- Intangible replaces the tangible

A model for light around us

- The light around us is a mixture of photons of different wavelengths
- Key points of the model for our discussion
- The signal is made of discrete bits (like rain drops)
- You can imagine counting them
- The bits have a characteristic number (wavelength)
- This distinguishes light from the colors in a rainbow

(from WikiPedia commons)

\leftarrow Increasing Frequency (v)

\leftarrow Increasing Frequency (v)

Colors we can see

- The rainbow is missing white, pink, purple, ...
- There is more to color than what is in a rainbow!

A representation of the colors we see at a given brightness.

Light from two different surfaces

Color Vision Basics

Approximate spectra sensitivity for the three cone types

Sensor/light interaction example

sensor

photon distribution

Multiply lined up pairs of numbers and then sum up

Sensor/light interaction example

Multiply lined up pairs of numbers and then sum up

$$
\begin{array}{r}
0 * 0+0 * 8+1 * 6+3 * 3+7 * 1 \\
+4 * 2+2 * 6+0 * 4+0 * 3+0 * 0
\end{array}=42
$$

Sensor/light interaction example

This suggests that sensor/ light interaction is linear

$$
\begin{array}{r}
0 * 0+0 * 8+1 * 6+3 * 3+7 * 1 \\
+4 * 2+2 * 6+0 * 4+0 * 3+0 * 0
\end{array}=42
$$

Review of the main points so far

- Physics. The light signal is a distribution of photons of different wavelengths
- Human vision. There are three cones, each which make a different weighted sum of the input
- Next top --- how to recreate the experience?

How to recreate the experience?

- Plan A. Simply duplicate the light signal present when the image was taken
- This works, but it is impractical

How to recreate the experience?

- Plan A. Simply duplicate the light signal present when the image was taken
- This works, but it is impractical
- Plan B. Duplicate the sensor responses

> Key idea

Do you need the same light to get 42?

There are many possible ways to get 42!

Main point

- To recreate the cone responses, stimulate each one independently.
- Suppose that our cone sensors were like these simplified ones. Can this work?

Main point

Simplified sensors

Simplified ipad screen element photon distribution
(primaries)

Recreating the sensor responses

- Note that the photon distribution to recreate the sensor response can look completely different from the original!
- We need to compute the amount of each primary needed for each color to display
- This can be achieved by matrix-vector multiplication
- (Details beyond the scope of this lecture)

What about actual human sensors?

Second Main Point

- With three numbers, you cannot recreate all colors you can see.
- This is not a question of poor engineering. It is a consequence of the significant cone sensor overlap.

Available from efg2.com

Downstream from the cones

- Color reproduction based on three numbers works relatively well anyway, partly because our brain is so adept at reconstructing a world based on relative properties.
- If you (approximately) reproduce the cone responses, you will reproduce the effect.
- But what you actually see is complex!

The HVS

The shades of gray for the squares

 under A and B are the same!

$$
37
$$

Specifying Colour

Three standard lights

Three standard lights

Trichromacy

Experimental fact about people (with "normal" colour vision)

Specifying Colour

$(50,150,75)$

Specifying Colour

We don't want to do a matching experiment every time we want to use a new color!

Grassman's Contribution

Colour matching is linear

Three standard lights

Three standard lights

Matching is Linear (Part 1)

C 1 is matched with ($\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1$)
$\mathrm{C}=\mathrm{a} * \mathrm{C} 1$
C is matched with $\mathrm{a} *(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1)$

Test Light (C1)

Match with (X1, Y1, Z1)

Test Light (C2)

Match with (X2, Y2, Z2)

Three standard lights

Three standard lights

Matching is Linear (formal)

$\mathrm{C}=\mathrm{a} * \mathrm{C} 1+\mathrm{b}^{*} \mathrm{C} 2$
C 1 is matched with ($\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1$)
C 2 is matched with ($\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2$)
C is matched by

$$
\mathrm{a} *(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1)+\mathrm{b}^{*}(\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2)
$$

Specifying Color

On my monitor it's
$(\mathrm{R}, \mathrm{G}, \mathrm{B})=(75,150,100)$

Specifying Colour

Specifying Colour

R matches $\left(\mathrm{X}_{\mathrm{r}}, \mathrm{Y}_{\mathrm{r}}, \mathrm{Z}_{\mathrm{r}}\right)$
G matches $\left(X_{g}, Y_{g}, Z_{g}\right)$
B matches $\left(X_{b}, Y_{b}, Z_{b}\right)$

Specifying Colour

Then by
 (R,G,B)=(75,150,100)
 you mean (X,Y,Z), where

$$
\begin{aligned}
& X=75^{*} X_{\mathrm{r}}+150 * X_{\mathrm{g}}+100^{*} X_{\mathrm{b}} \\
& Y=75^{*} Y_{\mathrm{r}}+150 * Y_{\mathrm{g}}+100^{*} Y_{\mathrm{b}} \\
& Z=75^{*} \mathrm{Z}_{\mathrm{r}}+150 * \mathrm{Z}_{\mathrm{g}}+100^{*} \mathrm{Z}_{\mathrm{b}}
\end{aligned}
$$

(No need to match--just compute!)

Specifying Colour

... , now that we have specified the colour,
 I can print it!

$$
\left|\begin{array}{c}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array}\right|=\left|\begin{array}{ccc|c}
\mathrm{X}_{\mathrm{r}} & \mathrm{X}_{\mathrm{g}} & \mathrm{X}_{\mathrm{b}} \\
\mathrm{Y}_{\mathrm{r}} & \mathrm{Y}_{\mathrm{g}} & \mathrm{Y}_{\mathrm{b}} \\
\mathrm{Z}_{\mathrm{r}} & \mathrm{Z}_{\mathrm{g}} & \mathrm{Z}_{\mathrm{b}}
\end{array}\right|\left|\begin{array}{l}
75 \\
100 \\
150
\end{array}\right|
$$

$$
\left.\left|\begin{array}{c}
X \\
Y \\
Z
\end{array}\right|=\left|\begin{array}{ccc}
X_{r} & X_{\mathrm{g}} & X_{b} \\
Y_{r} & Y_{g} & Y_{b} \\
Z_{r} & Z_{\mathrm{g}} & Z_{b}
\end{array}\right| \right\rvert\, \begin{aligned}
& \mathrm{R} \\
& G \\
& B
\end{aligned}
$$

$$
\left|\begin{array}{c}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array}\right|=\mathrm{M}\left|\begin{array}{l}
\mathrm{R} \\
\mathrm{G} \\
\mathrm{~B}
\end{array}\right|
$$

Colour Reproduction (Monitors \& Projectors)

$$
\left|\begin{array}{c}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array}\right|_{\text {apple }}
$$

Find (R,G,B)

$$
\left|\begin{array}{c}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array}\right|_{\text {apple }}=\mathrm{M}\left|\begin{array}{l}
\mathrm{R} \\
\mathrm{G} \\
\mathrm{~B}
\end{array}\right|_{\text {apple }}
$$

$$
\left|\begin{array}{l|l|l}
\mathrm{R} \\
\mathrm{G} \\
\mathrm{~B}
\end{array}\right|_{\text {apple }}=\mathrm{M}^{-1}\left|\begin{array}{c}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array}\right|_{\text {apple }}
$$

Possible problems?

Avalable from efg2.com

Avalable from efg2.com

Avalable from efg2.com

Luminosity is not linear

Luminosity is not linear

- There is a huge dynamic range of brightness in the world we need to navigate
- Your response to brightness is controlled by various factors such as aperture size
- If one had to put a mathematical function on brightness, $\log ()$ might be a good choice.

Image encoding is not linear either

Deviations from our nice model

- Camera "black"
- Gamma

Camera Black

- Sensors always produce electrons, even if there is no light
- The effect increases as the temperature increases
- We can improve the model by adding a fixed offset
- Specifically, the R,G, and B recorded with the lens cap on
- The resulting model is not a linear transformation
- Technically, it is "affine"

Gamma correction

- For complicated reasons, the final output of a camera is often a non-linear transformation of the RGB described so far.
- Usually the same transformation is used for R, G, and B
- A typical "gamma correction" transformation is approximately

$$
F(x)=255 *\left(\frac{x}{255}\right)^{1 / 2.2} \quad(\text { roughly square root })
$$

Image Formation (non-linear transform)

Why are images typically encoded in this way?

Historically, images have been gamma corrected on the assumption that their values drive a CRT (cathode ray tube) monitor which are non-linear devices.

CRT display (getting very rare!)
[Hearn and Baker, pp 36-44]

Gamma encoding

- In the CRT, for a given input voltage, V , electrons hit the phosphors with energy E

$$
E \propto V^{\gamma}, \quad \text { where } \gamma \text { is } 5 / 2 \text { (i.e., 2.5) }
$$

- So, to drive the CRT so that the output energy is linear (recreating its capture) you send it a voltage

$$
V \propto E^{1 / \gamma}
$$

Image Formation (non-linear transform)

Coincidentally, this typically gamma correction is a sensible way to encode image data into a limited number of values (e.g. 256) due to the noise sensitivity of the human vision system.

Hence, while CRT displays are now obsolete, images are still typically non-linear, and the signal to modern displays (which are linear) are typically adjusted assuming typical incoming non-linear in images.

Equally spaced just noticeable differences

Gamma encoding

- The non-linear encoding means that linear displays (now common) need to implement the mapping from gamma encoded to linear
- One way to think about it is that they have to emulate CRT monitor
- Gamma is also becoming an image tone correction "knob" that either fixes an incorrect value, or simply makes some images look better.

Gamma calibration

- How can your mac robustly emulate a gamma of 2.2 for your monitor?
- The OS has no idea what you have hooked up to it!
- But it can make you turn knobs to make an image that should be linear to be linear
- System Preferences --> Displays --> Color --> Calibrate
- Select "expert mode"

Gamma calibration

If you have access to a Mac, then you can play with this under System Preferences --> Displays --> Color --> Calibrate (may need to select "expert")

You should be able to explain why matching the brightness of the middle gray object compared to the black and white stripes seen from a distance can help adjust a monitor so its output is linear.

Image Formation (deluxe version)

The response of an image capture system to a light signal $L(\lambda)$ associated with a given pixels is modeled by

$$
G^{(k)}=F^{(k)}\left(C^{(k)}\right)=F^{(k)}(b^{(k)}+\underbrace{\int L(\lambda) S^{(k)}(\lambda) d \lambda}_{\text {from before }})
$$

where $S^{(k)}(\lambda)$ is the sensor response function for the $k^{t h}$ channel and $b^{(k)}$ is the $k^{t h}$ channel response to black.
$S^{(k)}(\lambda)$ includes the contributions due to the aperture, focal length, sensor position in the focal plane.
$\mathrm{F}^{(\mathrm{k})}$ accounts for typical non-linearities such as gamma.

