
Multi-level networks

• A single artificial neuron has limited computing power
– Interesting networks have at least three* layers

– We will restrict our attention to feed-forward networks (no arrows
from later stages going back to earlier ones)

*Some (e.g., Bishop) count the number of arrow blocks, so this would be a two layer network.

Review

1

Layering and composition

• Our three layer network can be expressed as the
composition

• Similarly “deep” networks are bigger compositions

• Note that we like the functions to be differentiable, and the
chain rule is going to be useful.

y = f x() = f2 f1 x()()

Review

2

(for example)

ai
(1) = xi

(input layer) For l ≥1
zi

(l+1) = Wij
(l)

j=1

N (l)

∑ ai
(l) +bi

(l)

followed by ai
(l+1) = f zi

(l+1)()

⎧

⎨
⎪⎪

⎩
⎪
⎪

f z() = 1
1+ exp −z()

Review

3

(Matrix-vector form,  
f(•) is applied element-wise)

z(l+1) =W (l)a(l) +b(l)

a(l+1) = f z(l+1)()

Review

4

Training

• Tweak the weights so that for each training instance, the
output (e.g., label) for each input vector (e.g., image) is
close to correct

Review

5

Training

• Tweak the weights so that for each training instance, the
output (e.g., label) for each input vector (e.g., image) is
close to correct

• Optimize the objective function:

Neural	networks	are	prone	to	
overfitting,	so	regularize.	This	
regularization	term	is	just	one	
example—there	are	many	others.

Training	error,	
superscripts	are	
training	points	

J W ,b() = 1
m

1
2
hW ,b x

(i)()− y(i)
2⎛

⎝
⎜

⎞

⎠
⎟

i=1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥+

λ
2

Wji
(l)()

j=1

Sl+1

∑
i=1

Sl

∑
l=1

L−1

∑
2

Review

6

Training

w1

w2

E(w)

wA wB wC

rE

Review

7

Training

• We consider computing the gradient, and what we do with it as
separate tasks

• We generally compute the gradient in training

• We might compute it due to a specific data point (on-line) or for
all points considered together

• Once we estimate the gradient we then might
• Follow it (e.g., conjugate gradient descent)
• Follow it stochastically
• Pass it to some other fancy optimizer

8

Computing the gradient

• A naive way is to simply compute finite differences for
each parameter (weight):

• What is the complexity for each training step?

∂E
∂Wi, j

(l) ≅
E wnew()−E w()

Δ

where wnew uses Wi, j
(l) +Δ instead of Wi, j

(l)

9

Computing the gradient

• A naive way is to simply compute finite differences for
each parameter (weight):

• Complexity for each training step is

∂E
∂Wi, j

(l) ≅
E wnew()−E w()

Δ

where wnew uses Wi, j
(l) +Δ instead of Wi, j

(l)

O W 2()

10

Back propagation

• Better way is to use the chain rule

• First compute a forward pass of the network, and keep track
of all intermediate activations

• Now we work backwards level by level

• We will start by looking at the calculus of weights and nodes

• We will look at the gradient due to one training point
– You can simply add the effect of multiple points

Details skipped

11

(for example)

ai
(1) = xi

(input layer) For l ≥1
zi

(l+1) = Wij
(l)

j=1

N (l)

∑ ai
(l) +bi

(l)

followed by ai
(l+1) = f zi

(l+1)()

⎧

⎨
⎪⎪

⎩
⎪
⎪

f z() = 1
1+ exp −z()

Recall

(In what follows we include the bias in W)

Slide skipped

12

δ j
l() =

∂E
∂z j

l() =
∂E
∂zk

l+1()
k
∑ ∂zk

(l+1)

∂z j
l()

=
∂E
∂zk

l+1()
k
∑ ʹf z j

(l)()Wk , j
(l)

= ʹf z j
(l)() δk

l+1()

k
∑ Wk , j

(l+1)

Slide skipped

13

z j
l() only effects E through connections to the next layer

So, ∂E
∂z j

l() =
∂E z1

(l+1), z2
(l+1), z3

(l+1), ... ()
∂z j

l()

δ j
l() =

∂E
∂z j

l() =
∂E
∂zk

l+1()
k
∑ ∂zk

(l+1)

∂z j
l()

=
∂E
∂zk

l+1()
k
∑ ʹf z j

(l)()Wk , j
(l)

= ʹf z j
(l)() δk

l+1()

k
∑ Wk , j

(l+1)

Slide skipped

14

For the output layer, O, we only depend on the final activation

δ j
(o) =

∂E
∂z j

o() =
∂J W ,b()
∂z j

o() =
∂

1
2
aj

(o) − yj
2

∂z j
o() = aj

(o) − yj() ʹf z j
o()()

Slide skipped

15

Back propagation algorithm (backprop)

• Do a forward run with data vector, xn

• Compute the initial for each output layer value vs the
training data truth using

• Back propagate the ’s using

• Compute gradient components using

δ δ j
l() = ʹf z j

(l)() δk
l+1()

k
∑ Wk , j

(l)

δ j
(o) = aj

(o) − yj() ʹf z j
o()()

δ j
(o)

∂E
∂Wi, j

(l) =δ j
l+1()ai

(l)

Slide skipped

16

Different Architectures

• Differences in layers, connectivity, activation functions

“densely”	or	fully	connected,	2	output,	feedforward	network

17

Activation Functions
Sigmoid Historically	popular:	like	activation	of	neuron	

	 (0	=	saturated,	1	=	high	firing	rate)	
Rarely	used	now;	drawbacks:	
(1) Vanishing	gradient	problem:	saturates	in	0	or	1	regions	to	nearly	zero	gradient	

(hence,	sensitive	to	initialization,	and	during	learning).	
(2) Outputs	are	not	zero-centered:	leads	to	instability	during	gradient	descent	(if	

incoming	data	to	neuron	is	always	positive,	then	gradient	on	weights	during	
backprop	will	always	be	all	positive	or	all	negative).		Not	as	bad	as	issue	(1)

Tanh
A	“scaled”	sigmoid.	

Is	zero-centered,	so	universally	preferred	over	sigmoid

Rectified	Linear	Unit	(ReLU)
Now	very	popular	
(+)		Greatly	accelerates	(e.g.,	x6)	convergence	of	stochastic	gradient	descent	compared	
to	sigmoid/tanh;	believed	due	to	linear,	non-saturating	form	
(+)	Compared	to	expensive	sigmoid/tanh	operations	(exponentials),	ReLU	can	be	
implemented	by	simply	threshold	matrix	of	activations	at	zero.	
(-)	“dying	ReLU”	problem:	gradient	update	could	go	below	zero	and	never	be	activated	
again.		If	learning	rate	too	high,	leads	to	“dead”	neurons	(up	to	40%)	that	never	
activated	across	the	entire	training	dataset.		Can	be	minimized	with	proper	learning	
rate.

Maxout Non-linearity	applied	on	the	dot	product	between	the	weights	and	the	data	
Generalizes	ReLU	(w1,b1=0)	and	Leaky	ReLu.	
Gets	benefits	of	ReLU	while	avoiding	dying	ReLU.	
BUT,	doubles	the	number	of	parameters	for	every	neuron.

Rare	to	use	different	activation	functions	in	same	
network,	although	no	in	principle	reason	not	to.

Leaky	ReLU
Attempts	to	fix	“dying	ReLU”	problem.	
Instead	of	0	when	x	<	0,	have	a	small	negative	slope,	e.g.	0.01.	
Sometimes	slope	in	negative	region	is	a	parameter	of	each	neuron	(Kaiming	He	et	al.,	2015)	
Mixed	results	–	works	for	some.

18

Deep neural nets
Pretty	much	anything	>	3	layers

GoogLeNet	(labeling	images	with	text)

40	“layers”	
(some	of	which	have	substructure)	

19

Convolutional neural network

• Convolutional neural networks tie weights so that the linear part
implements convolution

• In a typical convnet successive layers become smaller by
pooling, and representation (ideally) gets less localized and more
semantic

20

• An autoencoder maps inputs to copies of themselves

• This mostly only makes sense if the intermediate layers
bottleneck down to a sparser representation, usually
implying fewer (active) neurons

• The idea is to discover a lower dimensional representation
that can approximately reconstruct the data
– Note similarity with PCA
– Note the obvious relation to compression

Autoencoder

21

Autoencoder

22

Training	
Input	 Inferred	

output	a0er	
training	

Previously	
unseen	
input	

Reconstruc8on	
of	previously	
unseen	images	

23

Layer	1	weights	for	
autoencoder	with	
just	weight	
regulariza7on	

Layer	1	weights	for	
autoencoder	with	
just	weight	
regulariza7on	Plus	
hidden	layer	
sparsity	constraint.	
Note	the	structure	

24

Recurrent neural network (RNN)

Trained,	e.g.,	with	Backpropagation	Through	Time	(BPTT)

25

(Long-short term memory) LSTM NN

26

