Review

Multi-level networks

* Assingle artificial neuron has limited computing power

— Interesting networks have at least three* layers

output layer
input layer
hidden layer

— We will restrict our attention to feed-forward networks (no arrows
from later stages going back to earlier ones)

*Some (e.g., Bishop) count the number of arrow blocks, so this would be a two layer network.

Review

Layering and composition
Our three layer network can be expressed as the
composition y = f(x) =f (f] (x))
Similarly “deep” networks are bigger compositions

Note that we like the functions to be differentiable, and the
chain rule is going to be useful.
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(for example)
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Review

Training

* Tweak the weights so that for each training instance, the
output (e.g., label) for each input vector (e.g., image) is
close to correct
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Review

Training

* Tweak the weights so that for each training instance, the
output (e.g., label) for each input vector (e.g., image) is
close to correct

* Optimize the objective function:
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Neural networks are prone to
overfitting, so regularize. This
regularization term is just one
example—there are many others.

Training error,
superscripts are
training points

Review

Training

Training

* We consider computing the gradient, and what we do with it as
separate tasks

* We generally compute the gradient in training

*  We might compute it due to a specific data point (on-line) or for
all points considered together

* Once we estimate the gradient we then might

l l w1 * Follow it (e.g., conjugate gradient descent)
WA WB We * Follow it stochastically
* Pass it to some other fancy optimizer
(105) VE
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Computing the gradient

* A naive way is to simply compute finite differences for
each parameter (weight):

OE _ E(w”e“’) - E(W)
WS A

where w"" uses Wl.(;) + A instead of Wi(;.)

* What is the complexity for each training step?

Computing the gradient

* A naive way is to simply compute finite differences for
each parameter (weight):

OE _ E(w”"”’)—E(w)
wl A

where w"" uses W,.(;.) + A instead of Wi(;)

 Complexity for each training step is O (WZ)
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. Details skipped
Back propagation

* Better way is to use the chain rule

* First compute a forward pass of the network, and keep track
of all intermediate activations

* Now we work backwards level by level
* We will start by looking at the calculus of weights and nodes

* We will look at the gradient due to one training point

— You can simply add the effect of multiple points
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(In what follows we include the bias in W)
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Slide skipped
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Slide skipped

For the output layer, O, we only depend on the final activation
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Slide skipped
Back propagation algorithm (backprop)

Do a forward run with data vector, Xn

e Compute the initial 8,” for each output layer value vs the
training data truth using & = (a\” -y,) £'(2")

* Back propagate the &’s using 6! = f'(z)") > 8{"'w,"

k
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e Compute gradient components using PRl
i

15

16




Different Architectures Activation Functions

Sigmoid

1
. . . — . f(2)
» Differences in layers, connectivity, activation functions

1+ exp(—z)

f'(z) = f(2)(1 = f(2))
“densely” or fully connected, 2 output, feedforward network

Tanh

) — tanh(s) = SP() — ep(=2)
#(z) = tanh(z) exp(z) +exp(—2) -

f'(z) = 1 — tanh?(2)

Rectified Linear Unit (ReLU)

—_— f(z) = max(0, z)
. Joifz<o
hye(x) &= {I if 2> 0

—

Leaky Re"ft(jﬂ) _Jaz ifz<0
+1 T ifzzo

Layerts a ifz<C

+1 f’(:)*{] 2> 0
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Maxout

LayerL, LayerL, max(w, z + by, wy = + bo)
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Deep neural nets Convolutional neural network

Pretty much anything > 3 layers

* Convolutional neural networks tie weights so that the linear part
implements convolution

e GoogleNet (labeling images with text)
e =
ZE=
EE‘EEE Convolution Pooling Convolution Pooling (o::lIZ(ed Co::lIZmd Output Predictions
===z < Image Encoder =
e > . . 1 L == e dog (0.01)
F¥+4-1 (a linear mapping) 1 L l— cat (0.04)
e T nl I'-_ qebbo;x&oig‘ao)z)
38 R e =) I O e = - ;
%:E L D L L (- R
53‘52
= N
40 Iayers” 2 300-D|men3|or}al
(some of which have substructure) == Visual Embedding * In a typical convnet successive layers become smaller by
4096-Dimensional Vector pooling, and representation (ideally) gets less localized and more
Image Features Vector semantic
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Autoencoder

* An autoencoder maps inputs to copies of themselves

* This mostly only makes sense if the intermediate layers
bottleneck down to a sparser representation, usually
implying fewer (active) neurons

* The idea is to discover a lower dimensional representation
that can approximately reconstruct the data

— Note similarity with PCA

— Note the obvious relation to compression

Autoencoder
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Inferred
output after
training
Previously
unseen Reconstruction
input of previously

unseen images

Layer 1 weights for
autoencoder with
just weight
regularization

Layer 1 weights for
autoencoder with
just weight
regularization Plus
hidden layer
sparsity constraint.
. Note the structure
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Recurrent neural network (RNN) (Long-short term memory) LSTM NN
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Trained, e.g., with Back tion Th h Ti BPTT
rained, e.g., with Backpropagation Through Time ( ) Legend :
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