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An Example Problem
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Abstract

We propose deep convolutional Gaussian processes, a deep
Gaussian process architecture with convolutional structure.
The model is a principled Bayesian framework for detecting
hierarchical combinations of local features for image classi-
fication. We demonstrate greatly improved image classifi-
cation performance compared to current Gaussian process
approaches on the MNIST and CIFAR-10 datasets. In partic-
ular, we improve CIFAR-10 accuracy by over 10 percentage
points.

networks can often leverage a large number of training data
to counteract this problem. Developing methods that are bet-
ter regularized and can incorporate prior knowledge would
allow us to deploy machine learning methods in domains
where massive amounts of data is not available. Conven-
tional neural networks do not provide reliable uncertainty
estimates on predictions, which are important in many real
world applications.

The deterministic CNN’s have been extended into the
probabilistic domain with weight uncertainties (Blundell et al.,
2015). Gal and Ghahramani (2016) explored the Bayesian



Desirable qualities for the ML classifier

* Accuracy: The classifier should be able to accurately classify new data

* Interpretability: output should be diagnosable (especially to
determine bias in the classifier)

* Trainability: The time/resources required to train a model should not
be too great

* Transferability: good results on one dataset should be indicative of
good results on a different dataset

* Robustness: should not require too much parameter tuning to work
well on a new problem



Classification pipeline
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Presentation Road-map

* Background questions
 What even is a Gaussian Process?
 What is a convolutional layer?

* Deep Convolution GP
* Paper implementation
e Comparative results
* |ssues with the paper
* Future extensions



What is a Gaussian Process?
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Materials and insight
taken from FCML




From Linear Regression to GP
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What is a Convolutional Filter?

* Common image filters
e Sharpener
* Edge detector

* Multiple response channels
* Differing stride sizes
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Deep Convolutional GP Implementation

* Response channels
* GP kernel: Radial Basis Function (RBF)
* Doubly stochastic variational inference

* Parameter initialization



A visual look at the response patches
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(a) Samples from the first layer.
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(b) Samples from the second layer.



Classification clusters at each layer
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How many response channels?
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Deep Conv GP Results

Inducing Test accuracy

Gaussian process models Layers points MNIST CIFAR-10 Reference
RBF AutoGP 1 200 98.29*)  55.05(*) Krauth et al. (2017)
Multi-channel conv GP 1 1000 98.83(*) 64.6*) Van der Wilk et al. (2017)
DeepCGP 1 384 98.38 58.65 current work
DeepCGP 2 2 x 384 99.24 73.85 7
DeepCGP 3 3 x 384 99.44 75.89 7
Neural network models  Layers # params

Deep kernel learning 5 23M .. 4.6M  99.2(%) 77.00) Wilson et al. (2016a)

DenseNet 250 15.3M N/A

94.81() Huang et al. (2017)




Some faults from the paper

* No comparison to similar depth CNN
* Why does the paper perform better on MNIST than CIFAR-107?

* Variational inference is reliant on the gaussian assumption
* MNIST is a much simpler problem

* Degenerate covariance problem



Future Research

Parameter

Adjustment Efficiency Experimental

Application-
based dataset
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